151 research outputs found

    Towards quantum-chemical method development for arbitrary basis functions

    Full text link
    We present the design of a flexible quantum-chemical method development framework, which supports employing any type of basis function. This design has been implemented in the light-weight program package molsturm, yielding a basis-function-independent self-consistent field scheme. Versatile interfaces, making use of open standards like python, mediate the integration of molsturm with existing third-party packages. In this way both rapid extension of the present set of methods for electronic structure calculations as well as adding new basis function types can be readily achieved. This makes molsturm well-suitable for testing novel approaches for discretising the electronic wave function and allows comparing them to existing methods using the same software stack. This is illustrated by two examples, an implementation of coupled-cluster doubles as well as a gradient-free geometry optimisation, where in both cases, an arbitrary basis functions could be used. molsturm is open-source and can be obtained from https://molsturm.org.Comment: 15 pages and 7 figure

    Quantum chemistry with Coulomb Sturmians:Construction and convergence of Coulomb Sturmian basis sets at the Hartree-Fock level

    Get PDF
    The first discussion of basis sets consisting of exponentially decaying Coulomb Sturmian functions for modelling electronic structures is presented. The proposed basis set construction selects Coulomb Sturmian functions using separate upper limits to their principle, angular momentum and magnetic quantum numbers. Their common Coulomb Sturmian exponent is taken as a fourth parameter. The convergence properties of such basis sets are investigated for second and third row atoms at the Hartree-Fock level. Thereby important relations between the values of the basis set parameters and the physical properties of the electronic structure are recognised. For example, an unusually large limit for the angular momentum quantum number in unrestricted Hartree-Fock calculations can be linked to the breaking of spherical symmetry in such cases. Furthermore, a connection between the optimal, i.e. minimum-energy, Coulomb Sturmian exponent and the average Slater exponents values obtained by Clementi and Raimondi (E. Clementi and D. L. Raimondi, J. Chem. Phys. 38, 2686 (1963)) is made. These features of Coulomb Sturmian basis sets emphasise their ability to correctly reproduce the physical features of Hartree-Fock wave functions.Comment: 16 pages, 14 figures, supporting inf

    The inverted singlet–triplet gap: a vanishing myth?

    Get PDF
    Molecules with an inverted singlet–triplet gap (STG) between the first excited singlet and triplet states, for example, heptazine, have recently been reported and gained substantial attention since they violate the famous Hund’s rule. Utilizing state-of-the-art high-level ab initio methods, the singlet–triplet gap vanishes and approaches zero from below whatever is improved in the theoretical description of the molecules: the basis set or the level of electron correlation. Seemingly, the phenomenon of inverted singlet–triplet gaps tends to vanish the closer we observe

    KineticNet: Deep learning a transferable kinetic energy functional for orbital-free density functional theory

    Full text link
    Orbital-free density functional theory (OF-DFT) holds the promise to compute ground state molecular properties at minimal cost. However, it has been held back by our inability to compute the kinetic energy as a functional of the electron density only. We here set out to learn the kinetic energy functional from ground truth provided by the more expensive Kohn-Sham density functional theory. Such learning is confronted with two key challenges: Giving the model sufficient expressivity and spatial context while limiting the memory footprint to afford computations on a GPU; and creating a sufficiently broad distribution of training data to enable iterative density optimization even when starting from a poor initial guess. In response, we introduce KineticNet, an equivariant deep neural network architecture based on point convolutions adapted to the prediction of quantities on molecular quadrature grids. Important contributions include convolution filters with sufficient spatial resolution in the vicinity of the nuclear cusp, an atom-centric sparse but expressive architecture that relays information across multiple bond lengths; and a new strategy to generate varied training data by finding ground state densities in the face of perturbations by a random external potential. KineticNet achieves, for the first time, chemical accuracy of the learned functionals across input densities and geometries of tiny molecules. For two electron systems, we additionally demonstrate OF-DFT density optimization with chemical accuracy.Comment: 10 pages, 8 figure

    A simple monomer-based model-Hamiltonian approach to combine excitonic coupling and Jahn-Teller theory

    Get PDF
    The interplay of excitonic and vibronic coupling in coupled chromophores determines the efficiency of exciton localization vs delocalization, or in other words, coherent excitation energy transfer vs exciton hopping. For the investigation of exciton localization in large coupled dimers, a model Hamiltonian approach is derived, the ingredients of which can all be obtained from monomer ab initio calculations alone avoiding costly ab initio computation of the full dimer. The accuracy and applicability of this model are exemplified for the benzene dimer by rigorous comparison to ab initio results

    Geometry dependence of excitonic couplings and the consequences for configuration-space sampling

    Get PDF
    Excitonic coupling plays a key role for the understanding of excitonic energy transport (EET) in, for example, organic photovoltaics. However, the calculation of realistic systems is often beyond the applicability range of accurate wavefunction methods so that lower-scaling semi-empirical methods are used to model EET events. In the present work, the distance and angle dependence of excitonic couplings of dimers of selected organic molecules are evaluated for the semi-empirical long-range corrected density functional based tight binding (LC-DFTB) method and spin opposite scaled second order approximate coupled cluster singles and doubles (SOS-CC2). While semi-empirically scaled methods can lead to slightly increased deviations for excitation energies, the excitonic couplings and their dependence on the dimer geometry are reproduced. LC-DFTB yields a similar accuracy range as density-functional theory (DFT) employing the ωB97X functional while the computation time is reduced by several orders of magnitude. The dependence of the exchange contributions to the excitonic couplings on the dimer geometry is analyzed assessing the calculation of Coulombic excitonic couplings from monomer local excited states only, which reduces the computational effort significantly. The present work is a necessary first step toward the simulation of excitonic energy transport using semi-empirical methods

    Interatomic and Intermolecular Coulombic Decay

    Get PDF
    Interatomic or intermolecular Coulombic decay (ICD) is a nonlocal electronic decay mechanism occurring in weakly bound matter. In an ICD process, energy released by electronic relaxation of an excited atom or molecule leads to ionization of a neighboring one via Coulombic electron interactions. ICD has been predicted theoretically in the mid nineties of the last century, and its existence has been confirmed experimentally approximately ten years later. Since then, a number of fundamental and applied aspects have been studied in this quickly growing field of research. This review provides an introduction to ICD and draws the connection to related energy transfer and ionization processes. The theoretical approaches for the description of ICD as well as the experimental techniques developed and employed for its investigation are described. The existing body of literature on experimental and theoretical studies of ICD processes in different atomic and molecular systems is reviewed. © 2020 American Chemical Societ
    • 

    corecore